根据实际结构布置,我们进行结构的初步分析,采用SAP2000结构计算软件,结构的翼缘和腹板采用实体单元,在栓钉位置采用普通梁元模拟,为了分析螺栓的连接性能,我们设定翼缘和腹板之间2mm间隙(实际结构远没有这么大),初步分析结构模型中不考虑实际结构中连接耳板的作用。结构的分析模型如图5。经过分析后得到结果如表1。
表1 实际结构的初步分析结果汇总
图5栓接T型钢初步分析模型
根据结构的初步分析可以得出,栓接T型钢在5.7米标高有面内支承,形成连续梁结构,结构的刚度能够满足要求规范要求,因为未考虑材料塑性,所以栓钉的剪力值只是理想弹性状态下的结果,但大体反应了栓钉群受力状态。对我们的试验方案有参考价值。
5.2试验方案制定
与一般组合梁一样,在结构整体计算通过的情况下,结构的薄弱环节就是连接部分了。栓接T型钢的栓钉承载力对整个结构的耐久性至关重要。因此我们决定对T型钢进行静力和10万次疲劳测试,以确保结构安全。试验目的:a.考察栓钉连接方式的T型钢在静力和动力作用下的结构性能。B.验证理论分析的是否正确。我们委托东南大学工程结构与材料试验中心进行该项试验。
为了真实的模拟T型钢梁的实际可能的荷载状态,本次采用高频疲劳和低周频劳满负荷试验,试验要求T梁的下弦最大应力幅达到150Mpa左右,另外由于疲劳机吨位较大,结构的刚度不能太小,否则无法成功循环加载。由于T型钢总长10米,采用1:1模型试验有困难,根据栓接T型钢的初步分析中栓钉的剪力分布情况,依据栓钉剪力和弯矩等效原则,考虑结构疲劳试验要求,我们分别采用2.1米跨度梁承受高频4KN~26KN正弦波循环荷载,4.2米跨度梁承受低周4KN~14KN正弦波循环荷载。这样既接近实际钢梁尺寸,又能够有足够的刚度使疲劳机加载能够得以顺利进行。两种跨度梁均采用试验室易于实现的简支条件,相对于实际结构的连续梁体系,该边界条件对T型钢梁的承载更不利。两种跨度梁的初步计算结果如表2所示:
表2 在14KN静荷载作用试验用栓接T型钢的初步分析
跨度 |
边界条件 |
下弦最大拉应力(Mpa) |
最大位移(mm) |
螺栓中剪力(KN) |
最大剪力 |
相应位置 |
2.1 |
简支 |
151 |
7.7 |
30 |
支座端 |
4.2 |
简支 |
140 |
22.2 |
31 |
支座端 |
6.有限元精细模型分析
为了更准确的分析结构的真实受力状态,我们又采用ANSYS软件进行精细模型分析,栓接T型钢的有限元精细模型见图 6,上翼缘和腹板以及栓钉均采用SOLID92单元,该单元为带边中点的四面体单元,10个节点,每个节点3个自由度,能够适用于弹塑性,几何非线性等结构分析中。由于在螺栓拧紧后,螺帽与翼缘板焊牢,所以在建模时省却螺帽,仅仅建立螺杆(词条“螺杆”由行业大百科提供)模型。翼缘与腹板之间采用面面接触单元,接触算法选用Augment-Lagrange乘子算法。栓钉连接施工时,没有进行严格的扭力测试,预紧力(词条“预紧力”由行业大百科提供)无法估出,故在精细模型中不计螺栓预紧力。在该模型中还将T型钢梁平面外连接板作用考虑在内,经计算分析连接板对栓接T型钢梁的作用不可忽略。
图6 栓接T型钢有限元精细模型
建设单位: 北京首都国际机场扩建指挥部
工程地点: 北京首都国际机场内
设计单位: 中国航空工业规划设计研究院
建筑高度:33m
幕墙面积:46800m2
幕墙类型:铝合金玻璃幕墙、铝板
栓接T型钢与焊接T型钢(未经过焊缝磨平)的承载力和刚度的区别也为我们所关注,所以我们还进行了焊接T型钢的精细模型分析,焊接T型钢的翼缘腹板完全连接,全部采用Solid92单元。为了方便比较对照,焊接T型钢也采用4.2米跨度,简支。
下面首先进行的是与实验结构相同T型钢梁的理论分析。由于T梁的几何和受载具有对称性,根据结构对称原理,选取T型钢模型一半进行分析。
6.1焊接T型钢分析结果
上一页1234下一页